Molecular regulation of antibiotic biosynthesis in streptomyces.
نویسندگان
چکیده
Streptomycetes are the most abundant source of antibiotics. Typically, each species produces several antibiotics, with the profile being species specific. Streptomyces coelicolor, the model species, produces at least five different antibiotics. We review the regulation of antibiotic biosynthesis in S. coelicolor and other, nonmodel streptomycetes in the light of recent studies. The biosynthesis of each antibiotic is specified by a large gene cluster, usually including regulatory genes (cluster-situated regulators [CSRs]). These are the main point of connection with a plethora of generally conserved regulatory systems that monitor the organism's physiology, developmental state, population density, and environment to determine the onset and level of production of each antibiotic. Some CSRs may also be sensitive to the levels of different kinds of ligands, including products of the pathway itself, products of other antibiotic pathways in the same organism, and specialized regulatory small molecules such as gamma-butyrolactones. These interactions can result in self-reinforcing feed-forward circuitry and complex cross talk between pathways. The physiological signals and regulatory mechanisms may be of practical importance for the activation of the many cryptic secondary metabolic gene cluster pathways revealed by recent sequencing of numerous Streptomyces genomes.
منابع مشابه
Construction of Recombinant Vectors Containing Clavulanic Acid Antibiotic Regulatory Gene, claR, Isolated of Streptomyces clavuligerus Strains
The claR of Streptomyces clavuligerus in the clavulanic acid gene cluster encodes a transcriptional regulator that controls clavulanic acid biosynthesis. The main goal of this study was isolation and molecular detection of the claR gene and its cloning in the Streptomyces specific vector (pMA:: hyg). By cinsideration of the claR gene’s start codon, the specific primers were designed. After geno...
متن کاملBiosynthesis of gold nanoparticles using streptomyces fulvissimus isolate
Objective(s): In recent years, the biosynthesis of gold nanoparticles has been the focus of interest because of their emerging application in a number of areas such as biomedicine. In the present study we report the extracellular biosynthesis of gold nanoparticles (AuNPs) by using a positive bacterium named Streptomyces fulvissimus isolate U from rice fields of Guilan Province, Iran.Materials a...
متن کاملGamma-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation.
Small signalling molecules called gamma-butyrolactones are mainly produced by Streptomyces species in which they regulate antibiotic production and morphological differentiation. Their molecular mechanism of action has recently been unravelled in several streptomycetes, revealing a diverse and complex system. Gamma-butyrolactones and their receptors also occur in some other Actinobacteria, sugg...
متن کاملCross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor.
A complex programme of regulation governs gene expression during development of the morphologically and biochemically complex eubacterial genus Streptomyces. Earlier work has suggested a model in which 'higher level' pleiotropic regulators activate 'pathway-specific' regulators located within chromosomal gene clusters encoding biosynthesis of individual antibiotics. We used mutational analysis ...
متن کاملOrganization of the biosynthetic gene cluster for the macrolide antibiotic spiramycin in Streptomyces ambofaciens.
Spiramycin, a 16-membered macrolide antibiotic used in human medicine, is produced by Streptomyces ambofaciens; it comprises a polyketide lactone, platenolide, to which three deoxyhexose sugars are attached. In order to characterize the gene cluster governing the biosynthesis of spiramycin, several overlapping cosmids were isolated from an S. ambofaciens gene library, by hybridization with vari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Microbiology and molecular biology reviews : MMBR
دوره 77 1 شماره
صفحات -
تاریخ انتشار 2013